

Virtualized Infrastructure Managers for edge computing: OpenVIM and OpenStack comparison IEEE BMSB2018, Valencia, 2018-06-08

Teodora Sechkova contact@virtualopensystems.com www.virtualopensystems.com

Teodora Sechkova, Software Engineer at Virtual Open Systems.

Virtual Open Systems is a high-tech software company active in open source virtualization solutions and custom services for complex mixed-criticality automotive systems, NFV infrastructures and consumer electronics.

This work is done as a part of the H2020 "Distributed Cloud & Radio Platform for 5G Neural Hosts" project (**www.5gcity.eu**).

Introduction

- Edge computing and multimedia
- Objectives

Virtualized Infrastructure Managers

- OpenStack
- OpenVIM
- Cloud Benchmarking
 - Extending CloudBench
 - Benchmark Configuration
 - Benchmark Results
- Conclusion

Edge computing and multimedia

Technologies pushing the traditional centralized cloud computing architectures to the edge:

- Software-Defined Networking (SDN)
- Network Functions Virtualization (NFV)
- Multi-access Edge Computing (MEC)
- ✓ Fifth Generation (5G) wireless systems
- Multimedia benefits:
 - ✓ Offloading computing power to the edge
 - Network traffic offloading
 - ✓ Local caching
 - Minimized latency and flexibility

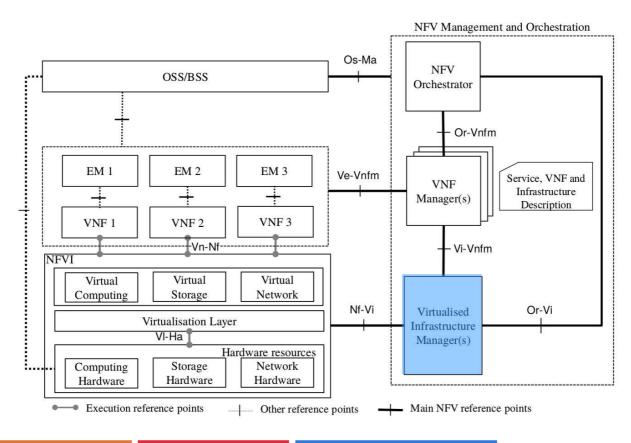
This work focuses on comparing and evaluating opensource implementations of Virtualized Infrastructure Managers in an edge computing environment.

- Edge virtualized infrastructure management
- Virtual machines provisioning time overhead
- Benchmarking tools extensions development
- OpenStack and OpenVIM benchmark

Virtualized Infrastructure Managers

Introduction

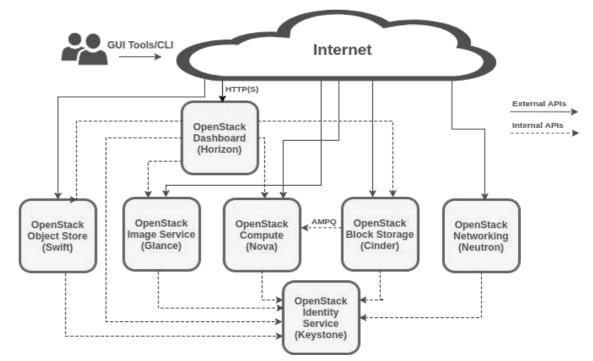
- Edge computing and multimedia
- Objectives


Virtualized Infrastructure Managers

- OpenStack
- OpenVIM
- Cloud Benchmarking
 - Extending CloudBench
 - Benchmark Configuration
 - Benchmark Results
- Conclusion

ETSI NFV framework

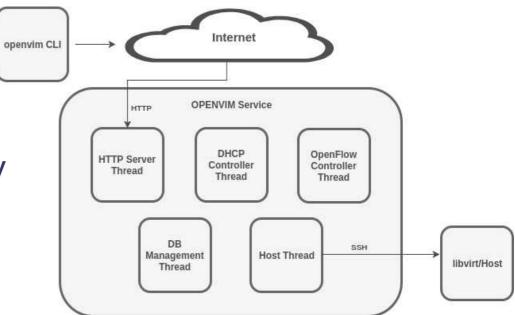
VIMs: "Control and manage the compute, storage, and network resources as well as their virtualization"



Virtual Open Systems Proprietary

OpenStack

An open-source project with the goal of being a cloud operating system managing large-scale compute, storage and networking resources.


- ➢ Open-source
- Flexible and expandable architecture
- ➢ Public APIs
- Intra-communication through messaging
- Horizontal and vertical scalability

A lightweight VIM part of ETSI Open Source MANO (ETSI OSM), the practical implementation of an ETSI MANO stack.

- Open-sourceSimple architecture
- Minimalistic VIM functionality
- Lightweight
- ► Public API
- ➢ Horizontal scalability

Introduction

- Edge computing and multimedia
- Objectives

Virtualized Infrastructure Managers

- OpenStack
- OpenVIM

Cloud Benchmarking

- Extending CloudBench
- Benchmark Configuration
- Benchmark Results

Conclusion

Metrics

VM provisioning - the process of deploying virtual machines
 Provisioning latency and provisioning throughput

Open-source tools

- PerfKitBenchmarker captures traditional cloud performance metrics
- Rally OpenStack benchmarking tool
- Rapid Experimentation and Analysis Tool (CloudBench) captures cloud performance and management metrics
- All tools already support OpenStack, none supports OpenVIM

CloudBench framework: written in Python, extensible

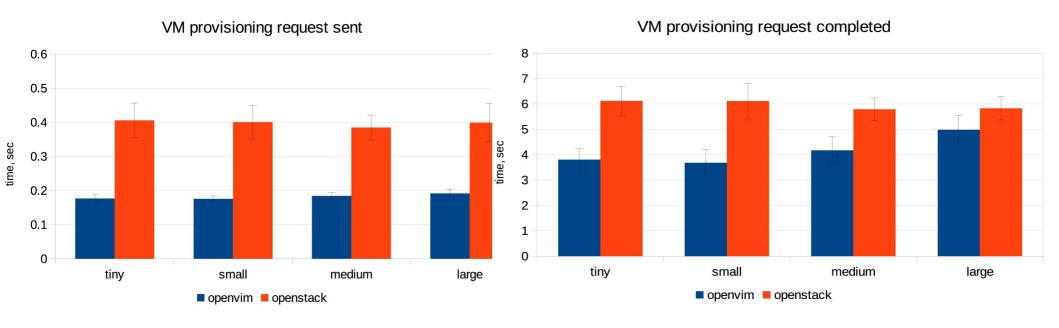
New cloud adapter for OpenVIM needed

- > New class OvimCmds: vmccleanup(), vmcregister(), vmcunregister(), vmcreate(), vmdestory()
- New configuration template file with OpenVIM specific parameters

```
[USER-DEFINED : CLOUDOPTION_MYOPENVIM]
OVIM_ACCESS = http://localhost:9080/openvim
OVIM_TENANT = tenant_uuid
OVIM_NETNAME = mgmt
OVIM_LOGIN = cbuser
```


- Processor: Intel(R) Xeon(R) CPU E5-2623 v4 @ 2.60GHz
- ► Memory: 32GB
- Storage: 4TB
- OS: Ubuntu 16.04.1 Server operating system with KVMenabled 4.4.0-31-generic Linux kernel
- ► Hypervisor: KVM
- OpenStack: deployed through DevStack, one host configuration
- OpenVIM: "host only" mode

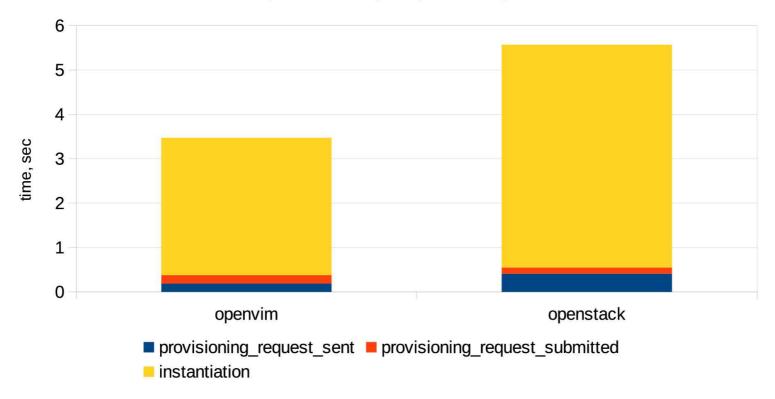
Flavor: defines the compute, memory, and storage capacity of a VM.


 \succ Flavors created for the experiments:

Name	RAM, MB	Disk, GB	VCPUs
tiny	1024	1	1
small	2048	20	1
medium	4096	40	2
large	8192	80	4

VM provisioning request sent - the time overhead while collecting preprovisioning data for images, flavors and existing VMs.

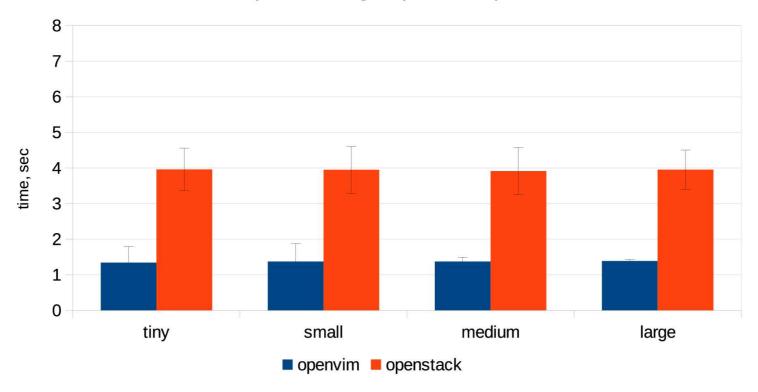
VM provisioning request completed – the time elapsed between submitting the VM provisioning request and the VM status changed to "running".



Virtual Open Systems Proprietary

VM provisioning stages:

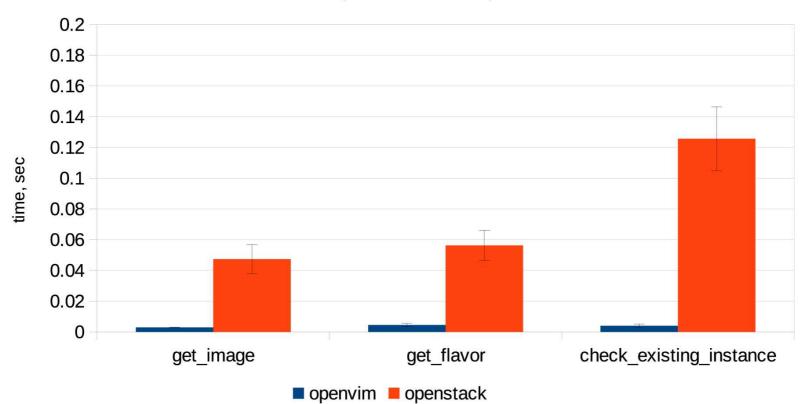
1) request sending 2) request submission 3) VM instantiation



VM provisioning request stages

Virtual Open Systems

VM deprovisioning request completed - the time elapsed between submitting the VM deprovisioning request and the actual VM removal.



VM deprovisioning request completed

Virtual Open Systems Proprietary

Responding to basic requests

Basic VIM operations comparison

Virtual Open Systems Proprietary

- Introduction
 - Edge computing and multimedia
 - Objectives

Virtualized Infrastructure Managers

- OpenStack
- OpenVIM
- Cloud Benchmarking
 - Extending CloudBench
 - Benchmark Configuration
 - Benchmark Results

Conclusion

OpenVIM

- Better performance
- Horizontally scalable
- X Lack of functionality
- **×** Worse support and development activities

OpenStack

- **X** Worse performance
- X Complex, general purpose
- Well supported, regularly updated
- Flexible, allowing for custom solutions
- Horizontally and vertically scalable

Outcome:

In a rapidly changing environment, with hardware processing capabilities constantly growing, regular maintenance, flexibility and scalability are more valuable software qualities than performance. Having such characteristics, OpenStack allows for the creation of custom solutions for the needs of the edge computing realm.

Future work:

This benchmark can serve as a reference for further internal analysis of both solutions as well as a comparison with other available products.

THANK YOU!

contact@virtualopensystems.com Web: virtualopensystems.com Products: http://www.virtualopensystems.com/en/products/ Demos: virtualopensystems.com/en/solutions/demos/ Guides: virtualopensystems.com/en/solutions/guides/ Research projects: virtualopensystems.com/en/research/innovation-projects/