

European Exascale Processor & Memory Node Design

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 671578

Paving the way towards a highly energy-efficient and highly integrated compute node for the Exascale revolution: the ExaNoDe approach.

Kevin Pouget

Virtualization Engineer Virtual Open Systems (ExaNoDe partner)

August 30th, 2017

Disclaimer: This presentation does not represent the opinion of the EC and the EC is not responsible for any use that might be made of information appearing herein.

ExaNoDe technological context

ExaNoDe Project Implementation

ExaNoDe at a glance

Key technologies for compute nodes towards a future Exascale capability

	System Architecture	Silicon Integration	Software
Key technologies	 ARMv8 Coherent islands Global Address Space 	 3D Integration: Chiplet Active Interposer Multi-Chip-Module: FPGA, Memory 	 FW, OS Virtualization Programming models Runtimes Mini-apps
Exascale requirements	 Energy efficiency Scalability 	 Design/manufacturing costs Heterogeneity/Specialization 	 Co-design Scalability

All combined in an integrated prototype

ExaNoDe Integration Approach

• 3D integration with active silicon interposer and chiplets

EUROSERVER: Package

Multi-Core System with four chiplets in a 40x40 package

A package contains 4 chiplets

EURO

SERVER

SEVENTH FRAMEWORK

- Each chiplet contains 2 quad-core ARMv8 A53
- System of 32 A53 cores in a Package

ExaNoDe SW objectives

Mini-apps for co-design process

Select of HPC applications to co-design the ExaNoDe architecture.

ExaNoDe Software Architecture

Analyse and compare ExaNoDe architecture.

SW stack: deployment support

Deliver firmware and Numa-aware OS

 For multi-board and ExaNoDe prototypes
 (Unimem data movement, memory protection and integration with peripheral devices; OS interface for light RDMA operations)

Provide virtualization layer

(next slide)

Support programming models:

 Enable portable exploitation of UNIMEM (MPI, GPI, OmpSs, OpenStream)

Evaluate UNIMEM architecture

 Latency, bandwidth, memory footprint, CPU usage, …

SW stack: Virtualization Layer

 For deployment ease, compatibility, efficiency of resource usage

For an increased flexibility and reliability

- Snapshot: save now, restore later, maybe elsewhere
- **Checkpoint**: periodic and incremental, to cope with HW or SW failures

For performance KVM + paravirtualization

 API Remoting: use accelerator APIs inside VMs (UNIMEM atomics and RDMA, MPI, OpenCL ...)

ExaNoDe: Conclusion

ExaNoDe concept:

- Architecture: Many simple cores instead of few complex ones
- Integration: Many simple heterogeneous chiplets instead of few complex Systemon-Chip
- Compute node interconnect: Active silicon interposer

