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 Motivation

 The ExaNeSt project

– Hardware platform

– User-space API

 RDMA virtualization with API Remoting

– Split of the RDMA API

– Shared memory implementation

– Guest zero-copy access to DMA buffers

– Completion notification event forwarding

 Experimental results

 Conclusions

Presentation overview
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 Virtualization in HPC

 Network stack in virtualized environments

 State of the Art

– SR-IOV

– Direct pass-through

 Why para-virtualization ?

– Device sharing

– Fine grain QoS

– Integrated system architecture

• Capabilities / limitations

Motivation
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 Hardware description of the prototype

 6-node cluster with ARMv8 Juno r2 boards

– 2x ARM Cortex-A72 and 4-core Cortex-A53

– Linux kernel 4.3.0

– UNIMEM1 loaded on the FPGA

 RDMA device

– Implemented on the FPGA

– Xilinx CDMA2 as the core IP

• Physical contiguous DMA transfers

– Interconnected through PCI-e over an FPGA switch

The ExaNeSt project
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RDMA user-space API 

 Custom non-blocking API

– Not compliant with the OFED-libibverbs API

 User-space API

– Kernel involvement only for initialization

 No memory-resident pages required

 DMA transfers

– Polling mode

– Interrupt mode – asynchronous notification via signal

The ExaNeSt project
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The ExaNeSt project – ARM Juno r2
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The ExaNeSt project - 6 nodes cluster
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RDMA operations split to Control and Data paths

 Control path

– Transfer initiation, transfer status, DMA buffer allocation

– Are simple / cheap to copy

 Data path

– The problem: 

• Moving data to DMA buffers costs in performance

• The DMA engine requires contiguous physical buffers

– Proposed solution:

• Re-map host physical memory to guest virtual address space

• Access data direct to the DMA buffer

Virtualizing the API
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 Frontend

– Guest dynamic library used by the application

– Implements the target API

– Forwards the requests to the Backend for handling

 Backend

– Handles guest requests

– Uses the ‘real’ library to access the hardware

– Replays return values and errors

 Transport layer

– Backend and Frontend communication

– Implementation defined, shared memory in our case

API Remoting - Architecture
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 Implemented on shared memory

– Enabled by co-operation between host and guest kernels

• Reconstruction of the hypervisor’s page tables

– Enables zero-copy between the Backend and Frontend

 Guest to Host shared buffers

– Guest process’ memory shared with a host process

– Used to create the initial shared memory (Backend-Frontend)

 Host to Guest shared buffers

– Replace guest physical memory with host physical memory

– Used to map contiguous DMA buffers to guest memory

API Remoting – Transport layer
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 Device sharing

– multiple VMs

– multiple guest applications per VM

 Auto-configuration of workers

– threads are spawned/destroyed on:

• VM start / shutdown

• Guest frontend register / unregister

 Each thread has a private:

– Shared memory with a frontend

– Descriptor to API Remoting framework

API Remoting - Backend
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 Intercepts the target API

 Forward the requests to the Backend

 Control shared memory area

– 1 page size length

– Synchronization primitive - spin-lock

– Describes the forwarded API 
functions:

• An API command identifier

• Forwarded arguments

• Stores return values

API Remoting - Frontend
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Guest to Host shared memory

 Share a guest allocated buffer with a host process

 After registration, access with load/store instructions

 Zero-copy

– Eliminates memory copies for guest process data

 Depends on architecture features

– Memory virtualization

– On ARM architecture

• Two memory translation stages (VA → IPA→ PA)

API Remoting – Shared memory
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Host to guest shared memory

 An example of a DMA buffer allocation

 Frontend

– Allocates the destination buffer (mmap)

– Forwards the call and buffer’s VA

API Remoting – Shared memory
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 Backend

– Allocates a ‘real’ DMA buffer

– VAs & size are passed to the kernel

API Remoting – Shared memory
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– The driver tracks the page frames:

• Guest Frames (guest buffer)

• Page Frames (host buffer)
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 Backend

– Pages swap (QEMU address space)

• Guest pages are removed

• Host pages inserted in place

API Remoting – Shared memory
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 Guest application

– The mmap()’d buffer points to the 
DMA buffer

– Direct access without copies
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API Remoting – Overall framework
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Synchronization primitives

 The Frontend and the Backend thread are synchronized with:

 Spin-lock

– A spin-lock into the control shared memory area

It is very fast, simple implementation

Will waste CPU cycles in the event of inactivity

 Virtio messages

– A process can register a synchronization event to the remote kernel

– The local process may sleep until remote events

– Efficient management of CPU resources

– It is slower than spin-lock, due to guest exits

API Remoting - Synchronization

18



Virtual Open Systems

 Events are handled by the Backend

 Backend locates the initiator

 Using kernel infrastructure backend 
informs the guest kernel for the completion 

 Guest kernel raises a SIGUSR1 to the 
target process

 The frontend library dispatches the user 
defined handler

API Remoting – Event forwarding
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Forwarding a completion event to the guest process
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Experimental Results (1/5)
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Set of tests performed on ExaNeSt’s prototype

 Virtualized vs Native performance

– Maximum bandwidth for single transfers

– Maximum bandwidth utilized with variable size burst 
transfers

– DMA buffer allocation

 Virtualization overhead

– Performance vs efficiency of the synchronization primitives
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Experimental Results (2/5)
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 Maximum transfer rate for a single transfer

– less than 7% overhead (case of 512KiB buffers)

– negligible with larger buffers
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Experimental Results (3/5)
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 Maximum transfer rate for a burst transfer of 1GiB of data

– less than 4% overhead (case of MiBKiB buffers)

– negligible with larger buffers

– Parallel burst transfers are more efficient than single transfers
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Experimental Results (4/5)
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 DMA buffer allocation

– The virtualization overhead is proportional to buffer’s size

• The overhead is paid only at the allocation time

• Following accesses to the buffer are served with native performance
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Experimental Results (5/5)
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 Synchronization primitives benchmarks
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Conclusions
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 RDMA Virtualization based on API Remoting communication

 Bidirectional shared memory buffers

 Access from guest processes to contiguous physical memory 
buffers

 Support multiple guest applications from different VM

 Bandwidth utilization close to native

– Overhead up to 7% for small (512KB) single transfers

 Extensions for the current work

– Adaptive mixed primitive synchronization policy

– Extend the target API to support OFED-libibverbs
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