
Lightweight and Generic RDMA Engine 
ParaVirtualization for the KVM Hypervisor

Angelos Mouzakitis1, Christian Pinto1, Nikolay Nikolaev1, Alvise Rigo1, 
Daniel Raho1, Babis Aronis2, Manolis Marazakis2

[1] Virtual Open Systems, Grenoble, France
[2] Foundation for Research and Technology – Hellas (FORTH), Heraklion, Greece

(*) The work was supported by the ExaNeSt project. (grant agreement No. 671553)



Virtual Open Systems

 Motivation

 The ExaNeSt project

– Hardware platform

– User-space API

 RDMA virtualization with API Remoting

– Split of the RDMA API

– Shared memory implementation

– Guest zero-copy access to DMA buffers

– Completion notification event forwarding

 Experimental results

 Conclusions

Presentation overview

2



Virtual Open Systems

 Virtualization in HPC

 Network stack in virtualized environments

 State of the Art

– SR-IOV

– Direct pass-through

 Why para-virtualization ?

– Device sharing

– Fine grain QoS

– Integrated system architecture

• Capabilities / limitations

Motivation

3



Virtual Open Systems

 Hardware description of the prototype

 6-node cluster with ARMv8 Juno r2 boards

– 2x ARM Cortex-A72 and 4-core Cortex-A53

– Linux kernel 4.3.0

– UNIMEM1 loaded on the FPGA

 RDMA device

– Implemented on the FPGA

– Xilinx CDMA2 as the core IP

• Physical contiguous DMA transfers

– Interconnected through PCI-e over an FPGA switch

The ExaNeSt project

4



Virtual Open Systems

RDMA user-space API 

 Custom non-blocking API

– Not compliant with the OFED-libibverbs API

 User-space API

– Kernel involvement only for initialization

 No memory-resident pages required

 DMA transfers

– Polling mode

– Interrupt mode – asynchronous notification via signal

The ExaNeSt project

5



Virtual Open Systems

The ExaNeSt project – ARM Juno r2

6



Virtual Open Systems

The ExaNeSt project - 6 nodes cluster

7



Virtual Open Systems

RDMA operations split to Control and Data paths

 Control path

– Transfer initiation, transfer status, DMA buffer allocation

– Are simple / cheap to copy

 Data path

– The problem: 

• Moving data to DMA buffers costs in performance

• The DMA engine requires contiguous physical buffers

– Proposed solution:

• Re-map host physical memory to guest virtual address space

• Access data direct to the DMA buffer

Virtualizing the API

8



Virtual Open Systems

 Frontend

– Guest dynamic library used by the application

– Implements the target API

– Forwards the requests to the Backend for handling

 Backend

– Handles guest requests

– Uses the ‘real’ library to access the hardware

– Replays return values and errors

 Transport layer

– Backend and Frontend communication

– Implementation defined, shared memory in our case

API Remoting - Architecture

9



Virtual Open Systems

 Implemented on shared memory

– Enabled by co-operation between host and guest kernels

• Reconstruction of the hypervisor’s page tables

– Enables zero-copy between the Backend and Frontend

 Guest to Host shared buffers

– Guest process’ memory shared with a host process

– Used to create the initial shared memory (Backend-Frontend)

 Host to Guest shared buffers

– Replace guest physical memory with host physical memory

– Used to map contiguous DMA buffers to guest memory

API Remoting – Transport layer

10



Virtual Open Systems

 Device sharing

– multiple VMs

– multiple guest applications per VM

 Auto-configuration of workers

– threads are spawned/destroyed on:

• VM start / shutdown

• Guest frontend register / unregister

 Each thread has a private:

– Shared memory with a frontend

– Descriptor to API Remoting framework

API Remoting - Backend

11



Virtual Open Systems

 Intercepts the target API

 Forward the requests to the Backend

 Control shared memory area

– 1 page size length

– Synchronization primitive - spin-lock

– Describes the forwarded API 
functions:

• An API command identifier

• Forwarded arguments

• Stores return values

API Remoting - Frontend

12



Virtual Open Systems

Guest to Host shared memory

 Share a guest allocated buffer with a host process

 After registration, access with load/store instructions

 Zero-copy

– Eliminates memory copies for guest process data

 Depends on architecture features

– Memory virtualization

– On ARM architecture

• Two memory translation stages (VA → IPA→ PA)

API Remoting – Shared memory

13



Virtual Open Systems

Host to guest shared memory

 An example of a DMA buffer allocation

 Frontend

– Allocates the destination buffer (mmap)

– Forwards the call and buffer’s VA

API Remoting – Shared memory

14



Virtual Open Systems

 Backend

– Allocates a ‘real’ DMA buffer

– VAs & size are passed to the kernel

API Remoting – Shared memory

15

– The driver tracks the page frames:

• Guest Frames (guest buffer)

• Page Frames (host buffer)



Virtual Open Systems

 Backend

– Pages swap (QEMU address space)

• Guest pages are removed

• Host pages inserted in place

API Remoting – Shared memory

16

 Guest application

– The mmap()’d buffer points to the 
DMA buffer

– Direct access without copies



Virtual Open Systems

API Remoting – Overall framework

17



Virtual Open Systems

Synchronization primitives

 The Frontend and the Backend thread are synchronized with:

 Spin-lock

– A spin-lock into the control shared memory area

It is very fast, simple implementation

Will waste CPU cycles in the event of inactivity

 Virtio messages

– A process can register a synchronization event to the remote kernel

– The local process may sleep until remote events

– Efficient management of CPU resources

– It is slower than spin-lock, due to guest exits

API Remoting - Synchronization

18



Virtual Open Systems

 Events are handled by the Backend

 Backend locates the initiator

 Using kernel infrastructure backend 
informs the guest kernel for the completion 

 Guest kernel raises a SIGUSR1 to the 
target process

 The frontend library dispatches the user 
defined handler

API Remoting – Event forwarding

19

Forwarding a completion event to the guest process



Virtual Open Systems

Experimental Results (1/5)

20

Set of tests performed on ExaNeSt’s prototype

 Virtualized vs Native performance

– Maximum bandwidth for single transfers

– Maximum bandwidth utilized with variable size burst 
transfers

– DMA buffer allocation

 Virtualization overhead

– Performance vs efficiency of the synchronization primitives



Virtual Open Systems

Experimental Results (2/5)

21

 Maximum transfer rate for a single transfer

– less than 7% overhead (case of 512KiB buffers)

– negligible with larger buffers

512 1024 2048 4096 8192
0

1

2

3

4

5

6

7

8

6.19

6.83
7.19

7.39 7.5

5.75

6.69
7.04

7.36 7.48

Native

Virtualized

Buffer size (KiB)

B
an

dw
id

th
 (

G
bp

s)



Virtual Open Systems

Experimental Results (3/5)

22

 Maximum transfer rate for a burst transfer of 1GiB of data

– less than 4% overhead (case of MiBKiB buffers)

– negligible with larger buffers

– Parallel burst transfers are more efficient than single transfers

512 1024 2048 4096 8192
0

1

2

3

4

5

6

7

8

6.67
7.01 7.09 7.12 7.2

6.51
6.87 6.77

7.05 7.16

Native

Virtualized

Buffer size (KiB)

B
an

dw
id

th
 (

G
bp

s)



Virtual Open Systems

Experimental Results (4/5)

23

 DMA buffer allocation

– The virtualization overhead is proportional to buffer’s size

• The overhead is paid only at the allocation time

• Following accesses to the buffer are served with native performance

512 1024 2048 4096 8192
0

20

40

60

80

100

120

140

160

180

0.63 0.64 0.64 0.66 0.68

33.21

44.39

62.82

102.59

164.45

Native

Virtualized

Buffer size (KiB)

Ti
m

e 
(m

s
)



Virtual Open Systems

Experimental Results (5/5)

24

 Synchronization primitives benchmarks

Spinlock Virtio-messages
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2.5

1791

Synchronization method

Ti
m

e 
(μ

s)



Virtual Open Systems

Conclusions

25

 RDMA Virtualization based on API Remoting communication

 Bidirectional shared memory buffers

 Access from guest processes to contiguous physical memory 
buffers

 Support multiple guest applications from different VM

 Bandwidth utilization close to native

– Overhead up to 7% for small (512KB) single transfers

 Extensions for the current work

– Adaptive mixed primitive synchronization policy

– Extend the target API to support OFED-libibverbs



Virtual Open Systems

[1] Unimem architecture : Marazakis, M. et al.: EUROSERVER: Share anything scale-out micro-server 
design. In: 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE). pp. 678–683. 
IEEE (2016)

[2] Xilinx AXI Central Direct Memory Access IP : 
https://www.xilinx.com/support/documentation/ip_documentation/axi_cdma/v4_1/pg034-axi-cdma.pdf

References

26

https://www.xilinx.com/support/documentation/ip_documentation/axi_cdma/v4_1/pg034-axi-cdma.pdf


http://exanest.eu


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

