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Introduction
 Focus on FPGA-accelerated 

virtualized environments

 Sharing of a physical I/O 
device across multiple VMs

 Device passthrough with 
SR-IOV

 Management of device to 
VM association
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SR-IOV – Single-Root I/O Virtualization
 Single-Root I/O Virtualization (SR-

IOV) allows a single PCIe device to 
appear as multiple, separate PCIe 
devices

 Direct access to the hardware with 
minimal to no overhead

 Partitioning Physical Function (PF) 
devices into Virtual Functions (VFs), 
which are then allocated to VMs
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SR-IOV – Advantages and Disadvantages

Advantages:

 More devices on the same HW

 Improved performance and reduced 
host CPU and memory utilization

 Control each VF independently

Disadvantages:

 Changing a PF configuration requires 
detaching all the VFs from the VMs
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SVFF – The Framework
 Simplify and enhance the 

management of VF

 Solve the lack of SR-IOV 
re-configuration support 
on guests
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SVFF – The Hardware part
 Provides SR-IOV support 

on a PCIe-attached FPGA 
and serves as the HW 
virtualization support

 The QDMA IP can be 
easily integrated into the 
FPGA design and supports 
up to 4 PFs and 252 VFs
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FPGA Design

Example of Vivado Block 
Design with the QDMA and 4 
Compute Units (CU, exported 
Vitis kernels) attached to 4 VF 
and connected to a High 
Bandwidth Memory (HBM) IP.



Virtual Open Systems Confidential & Proprietary 9

SVFF – The Software part
 Exposes two functions to 

the user: init and reconf

 Automate the initialization, 
creation, and configuration 
of VFs, providing the 
pause functionality

 Interacts with the VMM 
through libvirt and with the 
device using the PF
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SVFF – Init and Reconf
 Init - Initialize the FPGA 

device, eventually flashing 
the bitstream, creating the 
initial number of VFs and, 
attaching them to the VMs.

 Reconf – Change the VF 
configuration after the init, 
with the possibility to 
pause the devices instead 
of detaching them.
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SVFF – Pause Functionality
 Implemented in the 

VFIO device in QEMU

 Detach VFs from the 
host without detaching 
them from the guest

 Transparently 
reconfigure VF already 
attached to guest VMs
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SVFF – Attached state
 vfio-pci is used as back-

end driver on the host

 QEMU manages the 
passthrough operations 
with the VFIO device

 The guest can use the 
native VF driver
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SVFF – Detached state
 The host and guest 

drivers are unloaded

 The guest VM will see 
the PCI device 
disappear from the 
system

 The VF can be safely 
removed or re-assigned 
to another VM
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SVFF – Paused state [1]
 Only the host driver is 

unloaded

 The guest VM will 
continue seeing the PCI 
device but cannot do 
any I/O operations

 QEMU keeps the VFIO 
device paused ignoring 
guest requests
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SVFF – Paused state [2]
 vfio-pci can be unloaded, 

allowing changing the 
PF/VF configuration

 The VF is then bound to
the vfio-pci driver which
is attached to the
QEMU VFIO device

 The device is again 
available to the guest
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SVFF – Integration
 Interacts with the PF driver 

to change the device 
configuration, including the 
number of VF

 Integrated with QEMU and 
libvirt using their APIs

 Created new QEMU QMP 
command to enable the 
pause and unpause 
operations
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Testing and Results

Evaluate the impact of the pause
functionality, comparing it to the
classic attach/detach.

Minimal reduction in the delays 
from 2% to 2.71% with a reducing 
time of around 80ms per VF in all 
the scenarios.
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Conclusions [1]

SVFF overall:

 Native performance

 Simplicity

 Compatibility 

 Flexibility
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Conclusions [2]
 Easily unlock FPGA 

virtualization potential

 Streamlines VF 
management

 Enhances performance, 
resource utilization, and 
overall system efficiency

 Pause functionality
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