
Stefano Cirici – Michele Paolino – Daniel Raho

CITS23 – Genova, July 11th 2023

SVFF: An Automated Framework for SR-IOV
Virtual Function Management in FPGA Accelerated

Virtualized Environments

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 957269

Virtual Open Systems Confidential & Proprietary 2

Agenda
 Introduction
 SR-IOV Overview
 SVFF Framework

– The Hardware part

– The Software part

• Init and Reconf

• Pause functionality
 Integration
 Testing and results
 Conclusions

Virtual Open Systems Confidential & Proprietary 3

Introduction
 Focus on FPGA-accelerated

virtualized environments

 Sharing of a physical I/O
device across multiple VMs

 Device passthrough with
SR-IOV

 Management of device to
VM association

Virtual Open Systems Confidential & Proprietary 4

SR-IOV – Single-Root I/O Virtualization
 Single-Root I/O Virtualization (SR-

IOV) allows a single PCIe device to
appear as multiple, separate PCIe
devices

 Direct access to the hardware with
minimal to no overhead

 Partitioning Physical Function (PF)
devices into Virtual Functions (VFs),
which are then allocated to VMs

Virtual Open Systems Confidential & Proprietary 5

SR-IOV – Advantages and Disadvantages

Advantages:

 More devices on the same HW

 Improved performance and reduced
host CPU and memory utilization

 Control each VF independently

Disadvantages:

 Changing a PF configuration requires
detaching all the VFs from the VMs

Virtual Open Systems Confidential & Proprietary 6

SVFF – The Framework
 Simplify and enhance the

management of VF

 Solve the lack of SR-IOV
re-configuration support
on guests

Virtual Open Systems Confidential & Proprietary 7

SVFF – The Hardware part
 Provides SR-IOV support

on a PCIe-attached FPGA
and serves as the HW
virtualization support

 The QDMA IP can be
easily integrated into the
FPGA design and supports
up to 4 PFs and 252 VFs

Virtual Open Systems Confidential & Proprietary 8

FPGA Design

Example of Vivado Block
Design with the QDMA and 4
Compute Units (CU, exported
Vitis kernels) attached to 4 VF
and connected to a High
Bandwidth Memory (HBM) IP.

Virtual Open Systems Confidential & Proprietary 9

SVFF – The Software part
 Exposes two functions to

the user: init and reconf

 Automate the initialization,
creation, and configuration
of VFs, providing the
pause functionality

 Interacts with the VMM
through libvirt and with the
device using the PF

Virtual Open Systems Confidential & Proprietary 10

SVFF – Init and Reconf
 Init - Initialize the FPGA

device, eventually flashing
the bitstream, creating the
initial number of VFs and,
attaching them to the VMs.

 Reconf – Change the VF
configuration after the init,
with the possibility to
pause the devices instead
of detaching them.

Virtual Open Systems Confidential & Proprietary 11

SVFF – Pause Functionality
 Implemented in the

VFIO device in QEMU

 Detach VFs from the
host without detaching
them from the guest

 Transparently
reconfigure VF already
attached to guest VMs

Virtual Open Systems Confidential & Proprietary 12

SVFF – Attached state
 vfio-pci is used as back-

end driver on the host

 QEMU manages the
passthrough operations
with the VFIO device

 The guest can use the
native VF driver

Virtual Open Systems Confidential & Proprietary 13

SVFF – Detached state
 The host and guest

drivers are unloaded

 The guest VM will see
the PCI device
disappear from the
system

 The VF can be safely
removed or re-assigned
to another VM

Virtual Open Systems Confidential & Proprietary 14

SVFF – Paused state [1]
 Only the host driver is

unloaded

 The guest VM will
continue seeing the PCI
device but cannot do
any I/O operations

 QEMU keeps the VFIO
device paused ignoring
guest requests

Virtual Open Systems Confidential & Proprietary 15

SVFF – Paused state [2]
 vfio-pci can be unloaded,

allowing changing the
PF/VF configuration

 The VF is then bound to
the vfio-pci driver which
is attached to the
QEMU VFIO device

 The device is again
available to the guest

Virtual Open Systems Confidential & Proprietary 16

SVFF – Integration
 Interacts with the PF driver

to change the device
configuration, including the
number of VF

 Integrated with QEMU and
libvirt using their APIs

 Created new QEMU QMP
command to enable the
pause and unpause
operations

Virtual Open Systems Confidential & Proprietary 17

Testing and Results

Evaluate the impact of the pause
functionality, comparing it to the
classic attach/detach.

Minimal reduction in the delays
from 2% to 2.71% with a reducing
time of around 80ms per VF in all
the scenarios.

Virtual Open Systems Confidential & Proprietary 18

Conclusions [1]

SVFF overall:

 Native performance

 Simplicity

 Compatibility

 Flexibility

Virtual Open Systems Confidential & Proprietary 19

Conclusions [2]
 Easily unlock FPGA

virtualization potential

 Streamlines VF
management

 Enhances performance,
resource utilization, and
overall system efficiency

 Pause functionality

contact@virtualopensystems.com

Web: virtualopensystems.com

Products: http://www.virtualopensystems.com/en/products/

Demos: virtualopensystems.com/en/solutions/demos/

Guides: virtualopensystems.com/en/solutions/guides/

Research projects: virtualopensystems.com/en/research/innovation-projects/

mailto:contact@virtualopensystems.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

