gvmual Open Systems

VOSYSVirtualNet: Low-latency Inter-world
Network Channel for Mixed-Criticality Systems
2018-06-08

contact@virtualopensystems.com
www.virtualopensystems.com

K,

\é About

» Speaker: Julian VETTER
» Software Engineer at Virtual Open Systems (VOSYS) since 2017
» Ph.D. from TU Berlin (SecT - Security in Telecommunications research group)
» Thesis: "Strengthening System Security on the ARMv7 Processor Architecture
with Hypervisor-based Security Mechanisms"

> Interests: Operating Systems, Virtualization, Emulation, Embedded Devices and
Software Security.

» Company: Virtual Open Systems is a high-tech software company active in open
source virtualization solutions and custom services for complex mixed-criticality
automotive, NFV networking infrastructures, consumer electronics, mobile devices and

in general for embedded heterogeneous multicore systems around new generation
processor architectures.

> Funding: dRedBoX (http://www.dredbox.eu/)
» This work was funded through European Union’s Horizon 2020 research and

innovation program, grant agreement No. 687632 N\

2 Virtual Open Systems Confidential & Proprietary Virtval Open Sysrems

http://www.dredbox.eu/

#, | Motivation
\é Novel software architectures

» Due to the huge growth of processing power the integration of multiple software
systems on a single embedded controller becomes a viable option

» The integration of multiple components lowers the number of embedded controllers in
the car, consequently...

— ...reduced costs, weight

— ...heat generation and power consumption

> BUT these software stacks need to communicate
— Exchange of information previously over physical BUS in the car

— Now?

3 Virtual Open Systems Confidential & Proprietary Virtual Open Sysrems

Background
ARMv8-A features: ARM TrustZone

» TrustZone splits processor into two worlds (e.qg.,
Normal world / Secure world)

» Secure monitor firmware (EL3) is needed to support

context switching between worlds

Normal world

Rich OS applications

< |

AUTOMIITIVE
GRADE

Rich OS

Shared
memory

Secure world

Secure applications

Safety/Secure OS

|

Normal HW resources
and peripherals

|

Secure HW resources 1
and peripherals

| Hardware

Virtual Open Systems Confidential & Proprietary

ARMTRUSTZONE

System Security

Each compartment has access to
its own MMU allowing the isolation
of Secure and Normal translation
tables.

Caches have tag bits to discern
content cached by either secure or
normal world.

Security information is propagated
on AXI/AHB bus

Memory/Peripheral can also be
made secure

a > Provides secure interrupts

Virrual Open Systems

Background
VOSYSmonitor

VOSYSmonitor is a Virtual Open Systems proprietary system partitioner (C/ASM), running in
the Secure Monitor mode of ARM processors, which enables co-execution of virtualized
systems with a safety critical real time OS on the same platform and/or core.

Non critial OS Guest (Optional) Native OS
> . : L
Certifiable firmware running in secure —— Richos2 |i| safety critical OS
EL3 mode »
I '
» Safety critical RTOS isolation using [rm— ' M
o :
TrustZone AUTOMOTIVE :

. L GRADE LINUX lauT@sar
» Provide virtualization features for non- :

critical systems No ASIL ||| [No ASTL | || BN

» Power management

> Linux reboot feature I VOSYSmonitor

» Modular and scalable architecture

Normal world : Secure world
I

6 Virtual Open Systems Confidential & Proprietary Virtval Open Sysrems

VOSYSVirtualNet
Exemplary architecture

Non-critical applications Safety Critical system

Virtual Machines SC-ECUL1 (Cluster)
VECUL1 (IVIs) VECU2 (V2X) VECU3 (C)

N\ mmmm

AUTOMOTIVE B
Bluetooth GRADE LINUX 7 31155{%
LTE Safety certified
. . . - p Sensors
- » Linux/KVM Hypervisor =~ _ VOSYSVirwalNet FreeRTOS
WIFI CAN
bus
|

7 Virtual Open Systems Confidential & Proprietary Virtual Open Sysrems

~ . VOSYSVirtualNet
\é Design Goals

Several scenarios raise the need for a communication link between virtual machines (e.g.
displaying warning signs, parking assistance information, etc.)
> Low latency: Key requirement of our architecture

— Critical OS, running in the secure world, must forward information to non-secure OS
with a low delay

— All our design decisions were build around this “low latency” requirement.
» Minimally invasive:
— Source level access to OSs is not always guaranteed

— For Linux kernel modifications that can not be made upstream, an external patch has
to be maintained constantly.

— Changes to VOSYSmonitor have to comply to the ISO26262 specification
» Small hardware requirements:

— We need a form of signaling mechanism (e.g. interrupt)

— But external IRQs are arbitrarily assigned by the SoC

— So an SGl it is (some of them utilized by Linux kernel, but not all of them)

8 Virtual Open Systems Confidential & Proprietary Virtual Open Sysrems

~ VOSYSVirtualNet
Design Goals

Userspace

FreeRTOS Iﬂ Task N |

FreeRTOS+TCP

Linux Kernel| IP stack]

VOSYSmonitor

Virtual Open Systems Confidential & Proprietary Virtval Open Sysrems

VOSYSVirtualNet
Buffer Layout

Content
available

for reading > Simple data structure precedes the

O
_ , transmit (txbuf) and receive buffer (rxbuf)
(“management section”)

Entity A — Entity B

sedton , Transmit buffer (datasection) | 3 E40h entity only updates the pointer in its
@ i transmit buffer (txptr)
Managermen = Recetve butfer (data section) Entity can check if new data is available by
section i comparing rxbuf.txptr != txbuf.rxptr
Entity B — Entity A ! » Then data is copied from the buffer into
: : the respective network stack
I TX p.ointer | | RX pointer I)
- > Linux:
Masneacgtieégent ; Tr:ansmitlbuffer (data section) Skb_CODy_fFON_unea r_data()
I TX p;)inter > FreeRTOS:
E ; memcpy — NetworkBufferDescriptor_t
Management

seciion R:ece1velbuffer (data section)

10 Virtual Open Systems Confidential & Proprietary Virtual Open Sysrems

~ . VOSYSVirtualNet
Signaling

ARM SoCs usually feature 16 SGls (Software Generated Interrupt)
Some of them used by the Linux kernel (e.g. to kick secondary cores)
Still >8 unused

Generic Interrupt

YV V V V

. Controller
When either world sets one of them cnable, Clasify, Distribute
. . . Software Interrupts and Prioritize
pending VOSYSmonitor receives a trap Software Generted (oo | T
. Interrupts {SGI) 16 each CPU T *';L:':[T;fs t
> VOSYSmonitor forwards the request to the worn || o] T e
Interface Unit
other world 190 [Pt el v

> Respective IRQ (SGI) handler is called G [=

Private | _Interrupts (PP) IRQ/FIQ Teaapt Execution

» Linux: handle_IPI() inteface uni

Shared Peripherals

> FreeRTOS: custom IRQ handler ot [s cryPrvae
» Handler schedules lower priority job SR LA

r WFI, WFE and . Intlerr:pt
Ps 1 Programmable | Event Indicators OntrRo aln Status
10 Peripherals {1OF) :- Lagic J| eqisters

> Linux: tasklet_schedule()
> FreeRTOS: vTaskNotifyGiveFromISR()

11 Virtual Open Systems Confidential & Proprietary Virtval Open Sysrems

¢, | VOSYSVirtualNet
\d Security Measures

— T

> Denial-of-Service: Non-critical system sends request at a high rate to critical system to
cause a DoS

— CM1: IP stack application of the critical system must be defined with a low priority to
allow the execution of other tasks

— CM2: Implement a rate limiter to dismiss requests if they exceed a certain number in a
predefined time interval

» Packet corruption: Network packets sent by Non-critical system are corrupted by a
malicious application

— CMA1: IP stack application of the critical system must be isolated in a user application
to limit the attack impact

— CM2: Authentication - Cryptographic operations (high overhead)

» Memory corruption: Non-critical application allocates buffer at the boundary of Secure
world to provoke overwriting of critical system

— CM1: Non-critical system cannot directly access the buffer area located in the Secure
world

— CM2: Sanity check can be performed on the buffer location to ensure that the Secure
world is not affected

12 Virtual Open Systems Confidential & Proprietary Virtval Open Sysrems

Results
Code Statistics

> FreeRTOS
— Device driver: 267 (SLOC/ANSCI C)
— Modifications to FreeRTOS: -
— Moadifications to FreeRTOS+TCP: -
> Linux
— Device driver: 321 (SLOC/ANSCI C)
— Modifications to Linux kernel: 8 (SLOC/ANSI C)

13 Virtual Open Systems Confidential & Proprietary Virtval Open Sysrems

. | Results
\é Measurement Setups

» VOSYSVirtualNet
— Linux <> FreeRTOS shared memory network link
— Native driver that puts/gets the packets on/from the "wire” (buffer)
— Functions skb_copy_from_1linear_data() and skb_copy to linear_data() involve

memcpy ()
> Linux KVM / VirtlO (+ PCI + VHost) virio S R hostnet
— L|nUX (QemU) — LanX (Qemu) i Machine

queue-based network link

— Para-virtualized driver that writes
TAP

into queues (VirtQueue)
— Queues are part of guest memory Bridge Bridge — TAP — vhost

— Qemu (or host kernel in case of — o
Vhost) can directly write into queues card

(zero-copy)

> https://access.redhat.com: "vhost _net moves part of the
Virtio driver from the user space into the kernel. This
reduces copy operations, lowers latency and CPU usage.'

’

14 Virtual Open Systems Confidential & Proprietary Virtval Open Sysrems

15

Results
Ping latency measurements

—— KVM/Linux (VirtIO PCI + VHost) —— KVM/Linux

KVM/Linux (VirtlO PCI) —— VOSYSVirtualNet
10" 1
=)
g
= 10V - I ﬁ
= l |
2 f | \
= W "W N
1071 . . .
0 50 100 150 200

Measurement [#]

Virtual Open Systems Confidential & Proprietary Virtval Open Sysrems

16

Results
|IPerf TCP bandwidth measurements

— KVM/Linux (VirtIO PCI 4+ VHost) —-— KVM/Linux
KVM/Linux (VirtIO PCI) —— VOSYSVirtualNet
101
k) 0
o 17
Z 10714
= :
= _
m .
107 . . .
0 50 100 150 200

Measurement [#l

Virtual Open Systems Confidential & Proprietary Virtval Open Sysrems

17

o
—

Bandwidth [Mbps]
bo
—

Results

MTU vs. achievable bandwidth

Cao
=

[—
—

MTU [kBytes]

Virtual Open Systems Confidential & Proprietary

20)
| —— Bandwidth 5 —
1 —e— Context switch time) B
15 o
F10E
=
il
5 %
: O
' | ‘ 1 —L
1500 8192 16384 32768 65536

Virtual Open Systems

Conclusion
Thank you!

> Future work

— For the demonstrator, we choose FreeRTOS running in the secure world, but
integration of our design into a fully AUTOSAR compliant OS still stands out

— Low bandwidth results need investigation

* Achieved a bandwidth of ~38Mbps (but, implementation in the secure world is
very OS specific)

* Tests with increased MTU sizes already suggest that higher bandwidth results
can be achieved in the current setting

 Utilize Large Receive Offload (LRO)

> Conclusion c? C?

— Approach feasible (full prototype on an ARM
Juno development board)

— Achieved good results in terms of latency

18 Virtual Open Systems Confidential & Proprietary Virtual Open Sysrems

QVirrual Open Systems

contact@yvirtualopensystems.com
Web: virtualopensystems.com
Products: http://www.virtualopensystems.com/en/products/
Demos: virtualopensystems.com/en/solutions/demos/
Guides: virtualopensystems.com/en/solutions/guides/
Research projects: virtualopensystems.com/en/research/innovation-projects/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

