
Company Profile

2018-05-05
contact@virtualopensystems.com

www.virtualopensystems.com

VOSYSVirtualNet: Low-latency Inter-world
Network Channel for Mixed-Criticality Systems

2018-06-08

Virtual Open Systems Confidential & Proprietary 2

➢ Speaker: Julian VETTER
➢ Software Engineer at Virtual Open Systems (VOSYS) since 2017
➢ Ph.D. from TU Berlin (SecT - Security in Telecommunications research group)

➢ Thesis: "Strengthening System Security on the ARMv7 Processor Architecture
with Hypervisor-based Security Mechanisms"

➢ Interests: Operating Systems, Virtualization, Emulation, Embedded Devices and
Software Security.

➢ Company: Virtual Open Systems is a high-tech software company active in open
source virtualization solutions and custom services for complex mixed-criticality
automotive, NFV networking infrastructures, consumer electronics, mobile devices and
in general for embedded heterogeneous multicore systems around new generation
processor architectures.

➢ Funding: dRedBoX (http://www.dredbox.eu/)
➢ This work was funded through European Union’s Horizon 2020 research and

innovation program, grant agreement No. 687632

About

http://www.dredbox.eu/

Virtual Open Systems Confidential & Proprietary 3

Motivation
Novel software architectures

 Due to the huge growth of processing power the integration of multiple software
systems on a single embedded controller becomes a viable option

 The integration of multiple components lowers the number of embedded controllers in
the car, consequently…

– …reduced costs, weight

– …heat generation and power consumption

 BUT these software stacks need to communicate

– Exchange of information previously over physical BUS in the car

– Now?

Virtual Open Systems Confidential & Proprietary 4

Background
ARMv8-A features: ARM TrustZone

Normal world Secure world

Shared
memory

Secure monitor firmware

Safety/Secure OS

Hardware

Rich OS

Secure applications

Normal HW resources
and peripherals

Secure HW resources
and peripherals

Rich OS applications

 TrustZone splits processor into two worlds (e.g.,
Normal world / Secure world)

 Secure monitor firmware (EL3) is needed to support
context switching between worlds

 Each compartment has access to
its own MMU allowing the isolation
of Secure and Normal translation
tables.

 Caches have tag bits to discern
content cached by either secure or
normal world.

 Security information is propagated
on AXI/AHB bus

 Memory/Peripheral can also be
made secure

 Provides secure interrupts

Virtual Open Systems Confidential & Proprietary 6

Background
VOSYSmonitor

VOSYSmonitor is a Virtual Open Systems proprietary system partitioner (C/ASM), running in
the Secure Monitor mode of ARM processors, which enables co-execution of virtualized
systems with a safety critical real time OS on the same platform and/or core.

➢Certifiable firmware running in secure
EL3 mode

➢Safety critical RTOS isolation using
TrustZone

➢Provide virtualization features for non-
critical systems

➢Power management

➢Linux reboot feature

➢Modular and scalable architecture
ARM multi-cores platform

Virtual Open Systems Confidential & Proprietary 7

VOSYSVirtualNet
Exemplary architecture

Virtual Open Systems Confidential & Proprietary 8

VOSYSVirtualNet
Design Goals

 Low latency: Key requirement of our architecture

– Critical OS, running in the secure world, must forward information to non-secure OS
with a low delay

– All our design decisions were build around this “low latency” requirement.
 Minimally invasive:

– Source level access to OSs is not always guaranteed

– For Linux kernel modifications that can not be made upstream, an external patch has
to be maintained constantly.

– Changes to VOSYSmonitor have to comply to the ISO26262 specification
 Small hardware requirements:

– We need a form of signaling mechanism (e.g. interrupt)

– But external IRQs are arbitrarily assigned by the SoC

– So an SGI it is (some of them utilized by Linux kernel, but not all of them)

Several scenarios raise the need for a communication link between virtual machines (e.g.
displaying warning signs, parking assistance information, etc.)

Virtual Open Systems Confidential & Proprietary 9

VOSYSVirtualNet
Design Goals

Virtual Open Systems Confidential & Proprietary 10

VOSYSVirtualNet
Buffer Layout

➢ Simple data structure precedes the
transmit (txbuf) and receive buffer (rxbuf)
(“management section”)

➢ Each entity only updates the pointer in its
transmit buffer (txptr)

➢ Entity can check if new data is available by
comparing rxbuf.txptr != txbuf.rxptr

➢ Then data is copied from the buffer into
the respective network stack

➢ Linux:
skb_copy_from_linear_data()

➢ FreeRTOS:
memcpy NetworkBufferDescriptor_t→ NetworkBufferDescriptor_t

Virtual Open Systems Confidential & Proprietary 11

VOSYSVirtualNet
Signaling

➢ ARM SoCs usually feature 16 SGIs (Software Generated Interrupt)
➢ Some of them used by the Linux kernel (e.g. to kick secondary cores)
➢ Still >8 unused
➢ When either world sets one of them

pending VOSYSmonitor receives a trap
➢ VOSYSmonitor forwards the request to the

other world
➢ Respective IRQ (SGI) handler is called

➢ Linux: handle_IPI()
➢ FreeRTOS: custom IRQ handler

➢ Handler schedules lower priority job
➢ Linux: tasklet_schedule()
➢ FreeRTOS: vTaskNotifyGiveFromISR()

Virtual Open Systems Confidential & Proprietary 12

VOSYSVirtualNet
Security Measures

 Denial-of-Service: Non-critical system sends request at a high rate to critical system to
cause a DoS
– CM1: IP stack application of the critical system must be defined with a low priority to

allow the execution of other tasks
– CM2: Implement a rate limiter to dismiss requests if they exceed a certain number in a

predefined time interval
 Packet corruption: Network packets sent by Non-critical system are corrupted by a

malicious application
– CM1: IP stack application of the critical system must be isolated in a user application

to limit the attack impact
– CM2: Authentication - Cryptographic operations (high overhead)

 Memory corruption: Non-critical application allocates buffer at the boundary of Secure
world to provoke overwriting of critical system
– CM1: Non-critical system cannot directly access the buffer area located in the Secure

world
– CM2: Sanity check can be performed on the buffer location to ensure that the Secure

world is not affected

Virtual Open Systems Confidential & Proprietary 13

Results
Code Statistics

 FreeRTOS

– Device driver: 267 (SLOC/ANSCI C)

– Modifications to FreeRTOS: -

– Modifications to FreeRTOS+TCP: -
 Linux

– Device driver: 321 (SLOC/ANSCI C)

– Modifications to Linux kernel: 8 (SLOC/ANSI C)

Virtual Open Systems Confidential & Proprietary 14

Results
Measurement Setups

 VOSYSVirtualNet

– Linux ↔ FreeRTOS shared memory network link

– Native driver that puts/gets the packets on/from the "wire" (buffer)

– Functions skb_copy_from_linear_data() and skb_copy_to_linear_data() involve
memcpy()

 Linux KVM / VirtIO (+ PCI + VHost)

– Linux (Qemu) ↔ Linux (Qemu)
queue-based network link

– Para-virtualized driver that writes
into queues (VirtQueue)

– Queues are part of guest memory

– Qemu (or host kernel in case of
Vhost) can directly write into queues
(zero-copy)

➢ https://access.redhat.com: "vhost_net moves part of the
Virtio driver from the user space into the kernel. This
reduces copy operations, lowers latency and CPU usage."

Virtual Open Systems Confidential & Proprietary 15

Results
Ping latency measurements

Virtual Open Systems Confidential & Proprietary 16

Results
IPerf TCP bandwidth measurements

Virtual Open Systems Confidential & Proprietary 17

Results
MTU vs. achievable bandwidth

Virtual Open Systems Confidential & Proprietary 18

Conclusion
Thank you!

 Future work

– For the demonstrator, we choose FreeRTOS running in the secure world, but
integration of our design into a fully AUTOSAR compliant OS still stands out

– Low bandwidth results need investigation

• Achieved a bandwidth of 38Mbps (but, implementation in the secure world is ∼38Mbps (but, implementation in the secure world is
very OS specific)

• Tests with increased MTU sizes already suggest that higher bandwidth results
can be achieved in the current setting

• Utilize Large Receive Offload (LRO)

 Conclusion

– Approach feasible (full prototype on an ARM
Juno development board)

– Achieved good results in terms of latency

contact@virtualopensystems.com

Web: virtualopensystems.com

Products: http://www.virtualopensystems.com/en/products/

Demos: virtualopensystems.com/en/solutions/demos/

Guides: virtualopensystems.com/en/solutions/guides/

Research projects: virtualopensystems.com/en/research/innovation-projects/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

