
Company Profile

2018-05-05
contact@virtualopensystems.com

www.virtualopensystems.com

VOSYSVirtualNet: Low-latency Inter-world
Network Channel for Mixed-Criticality Systems

2018-06-08



Virtual Open Systems Confidential & Proprietary 2

➢ Speaker: Julian VETTER
➢ Software Engineer at Virtual Open Systems (VOSYS) since 2017
➢ Ph.D. from TU Berlin (SecT - Security in Telecommunications research group) 

➢ Thesis: "Strengthening System Security on the ARMv7 Processor Architecture 
with Hypervisor-based Security Mechanisms"

➢ Interests: Operating Systems, Virtualization, Emulation, Embedded Devices and 
Software Security.

➢ Company: Virtual Open Systems is a high-tech software company active in open 
source virtualization solutions and custom services for complex mixed-criticality 
automotive, NFV networking infrastructures, consumer electronics, mobile devices and 
in general for embedded heterogeneous multicore systems around new generation 
processor architectures.

➢ Funding: dRedBoX (http://www.dredbox.eu/)
➢ This work was funded through European Union’s Horizon 2020 research and 

innovation program, grant agreement No. 687632

About

http://www.dredbox.eu/


Virtual Open Systems Confidential & Proprietary 3

Motivation
Novel software architectures

 Due to the huge growth of processing power the integration of multiple software 
systems on a single embedded controller becomes a viable option 

 The integration of multiple components lowers the number of embedded controllers in 
the car, consequently…

– …reduced costs, weight 

– …heat generation and power consumption

 BUT these software stacks need to communicate

– Exchange of information previously over physical BUS in the car

– Now?



Virtual Open Systems Confidential & Proprietary 4

Background
ARMv8-A features: ARM TrustZone

Normal world Secure world

Shared
memory

Secure monitor firmware

Safety/Secure OS

Hardware

Rich OS

Secure applications

Normal HW resources
and peripherals

Secure HW resources
and peripherals

Rich OS applications

 TrustZone splits processor into two worlds (e.g., 
Normal world / Secure world)

 Secure monitor firmware (EL3) is needed to support 
context switching between worlds

 Each compartment has access to 
its own MMU allowing the isolation 
of Secure and Normal translation 
tables.

 Caches have tag bits to discern 
content cached by either secure or 
normal world.

 Security information is propagated 
on AXI/AHB bus

 Memory/Peripheral can also be 
made secure

 Provides secure interrupts



Virtual Open Systems Confidential & Proprietary 6

Background
VOSYSmonitor

VOSYSmonitor is a Virtual Open Systems proprietary system partitioner (C/ASM), running in 
the Secure Monitor mode of ARM processors, which enables co-execution of virtualized 
systems with a safety critical real time OS on the same platform and/or core.

➢Certifiable firmware running in secure 
EL3 mode

➢Safety critical RTOS isolation using 
TrustZone

➢Provide virtualization features for non-
critical systems

➢Power management

➢Linux reboot feature

➢Modular and scalable architecture
ARM multi-cores platform



Virtual Open Systems Confidential & Proprietary 7

VOSYSVirtualNet
Exemplary architecture



Virtual Open Systems Confidential & Proprietary 8

VOSYSVirtualNet
Design Goals

 Low latency: Key requirement of our architecture

– Critical OS, running in the secure world, must forward information to non-secure OS 
with a low delay

– All our design decisions were build around this “low latency” requirement.
 Minimally invasive:

– Source level access to OSs is not always guaranteed

– For Linux kernel modifications that can not be made upstream, an external patch has 
to be maintained constantly.

– Changes to VOSYSmonitor have to comply to the ISO26262 specification
 Small hardware requirements:

– We need a form of signaling mechanism (e.g. interrupt)

– But external IRQs are arbitrarily assigned by the SoC

– So an SGI it is (some of them utilized by Linux kernel, but not all of them)

Several scenarios raise the need for a communication link between virtual machines (e.g. 
displaying warning signs, parking assistance information, etc.)



Virtual Open Systems Confidential & Proprietary 9

VOSYSVirtualNet
Design Goals



Virtual Open Systems Confidential & Proprietary 10

VOSYSVirtualNet
Buffer Layout

➢ Simple data structure precedes the 
transmit (txbuf) and receive buffer (rxbuf) 
(“management section”)

➢ Each entity only updates the pointer in its 
transmit buffer (txptr)

➢ Entity can check if new data is available by 
comparing rxbuf.txptr != txbuf.rxptr

➢ Then data is copied from the buffer into 
the respective network stack

➢ Linux:
skb_copy_from_linear_data()

➢ FreeRTOS:
memcpy  NetworkBufferDescriptor_t→ NetworkBufferDescriptor_t



Virtual Open Systems Confidential & Proprietary 11

VOSYSVirtualNet
Signaling

➢ ARM SoCs usually feature 16 SGIs  (Software Generated Interrupt) 
➢ Some of them used by the Linux kernel (e.g. to kick secondary cores)
➢ Still >8 unused
➢ When either world sets one of them

pending VOSYSmonitor receives a trap
➢ VOSYSmonitor forwards the request to the

other world
➢ Respective IRQ (SGI) handler is called

➢ Linux: handle_IPI()
➢ FreeRTOS: custom IRQ handler

➢ Handler schedules lower priority job
➢ Linux: tasklet_schedule()
➢ FreeRTOS: vTaskNotifyGiveFromISR()



Virtual Open Systems Confidential & Proprietary 12

VOSYSVirtualNet
Security Measures

 Denial-of-Service: Non-critical system sends request at a high rate to critical system to 
cause a DoS
– CM1: IP stack application of the critical system must be defined with a low priority to 

allow the execution of other tasks
– CM2: Implement a rate limiter to dismiss requests if they exceed a certain number in a 

predefined time interval
 Packet corruption: Network packets sent by Non-critical system are corrupted by a 

malicious application
– CM1: IP stack application of the critical system must be isolated in a user application 

to limit the attack impact
– CM2: Authentication - Cryptographic operations (high overhead)

 Memory corruption: Non-critical application allocates buffer at the boundary of Secure 
world to provoke overwriting of critical system
– CM1: Non-critical system cannot directly access the buffer area located in the Secure 

world
– CM2: Sanity check can be performed on the buffer location to ensure that the Secure 

world is not affected



Virtual Open Systems Confidential & Proprietary 13

Results
Code Statistics

 FreeRTOS

– Device driver: 267 (SLOC/ANSCI C)

– Modifications to FreeRTOS: -

– Modifications to FreeRTOS+TCP: -
 Linux

– Device driver: 321 (SLOC/ANSCI C) 

– Modifications to Linux kernel: 8 (SLOC/ANSI C)



Virtual Open Systems Confidential & Proprietary 14

Results
Measurement Setups

 VOSYSVirtualNet

– Linux ↔ FreeRTOS shared memory network link

– Native driver that puts/gets the packets on/from the "wire" (buffer)

– Functions skb_copy_from_linear_data() and skb_copy_to_linear_data() involve 
memcpy()

 Linux KVM / VirtIO (+ PCI + VHost)

– Linux (Qemu) ↔ Linux (Qemu)
queue-based network link

– Para-virtualized driver that writes
into queues (VirtQueue)

– Queues are part of guest memory

– Qemu (or host kernel in case of
Vhost) can directly write into queues
(zero-copy)

➢ https://access.redhat.com: "vhost_net moves part of the 
Virtio driver from the user space into the kernel. This 
reduces copy operations, lowers latency and CPU usage."



Virtual Open Systems Confidential & Proprietary 15

Results
Ping latency measurements



Virtual Open Systems Confidential & Proprietary 16

Results
IPerf TCP bandwidth measurements 



Virtual Open Systems Confidential & Proprietary 17

Results
MTU vs. achievable bandwidth 



Virtual Open Systems Confidential & Proprietary 18

Conclusion
Thank you!

 Future work

– For the demonstrator, we choose FreeRTOS running in the secure world, but 
integration of our design into a fully AUTOSAR compliant OS still stands out

– Low bandwidth results need investigation

• Achieved a bandwidth of 38Mbps (but, implementation in the secure world is ∼38Mbps (but, implementation in the secure world is 
very OS specific)

• Tests with increased MTU sizes already suggest that higher bandwidth results 
can be achieved in the current setting

• Utilize Large Receive Offload (LRO)

 Conclusion

– Approach feasible (full prototype on an ARM
Juno development board)

– Achieved good results in terms of latency



contact@virtualopensystems.com

Web: virtualopensystems.com

Products: http://www.virtualopensystems.com/en/products/

Demos: virtualopensystems.com/en/solutions/demos/ 

Guides: virtualopensystems.com/en/solutions/guides/

Research projects: virtualopensystems.com/en/research/innovation-projects/


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

