
VOSYSwitch port to ARMv8

Nikolay Nikolaev
Alexander Spyridakis

and ODP integration

Virtual Open Systems Proprietary

 Snabb and VOSYSwitch

 Porting to ARMv8

 DEMO description and performance results

 Further development

Agenda

2

Virtual Open Systems Proprietary

Virtual Open Systems developed a vSwitch solution based on
the open source Snabb network toolkit. It is written in a high-
level scripting language – Lua.

The objective was to create a pure user-space, portable
solution suitable for NFV deployments.

One of the achievements that were created within this
project is “vhost-user” which is now a de-facto standard for
provisioning virtio-net based KVM virtual machines.

Almost all of the code is written in Lua, with some syscalls in
C (now in process of migration to Lua). There is a small
amount of Assembly too.

Introducing VOSYSwitch

3

Virtual Open Systems Proprietary

Lua (/ˈluːə/ LOO-ə, from Portuguese: lua [ˈlu.(w)ɐ] meaning
moon) is a lightweight multi-paradigm programming
language designed primarily for embedded systems and
clients. Lua is cross-platform since it is written in ANSI C,
and has a relatively simple C API.

https://en.wikipedia.org/wiki/Lua_(programming_language)

The Snabb toolkit implements a high speed, user space,
packet processing in Lua. The secret sauce to make it “fast”
is the JIT compiler.

Packet processing in a high-level
language

4

Virtual Open Systems Proprietary

LuaJIT is a multi-architecture (x86, PPC, ARM, MIPS), multi-
platform (Linux, BSD, OSX, Windows) tracing JIT compiler.

Tracing just-in-time compilation is a technique used by
virtual machines to optimize the execution of a program at
runtime. This is done by recording a linear sequence of
frequently executed operations, compiling them to native
machine code and executing them. This is opposed to
traditional just-in-time (JIT) compilers that work on a per-
method basis..

https://en.wikipedia.org/wiki/Tracing_just-in-time_compilation

Packet processing on a high-level
language - continued

5

Virtual Open Systems Proprietary

As most of the software stacks, snabb is composed of several
building blocks

 Snabb core – where the “main” lives

 Library – tools and utilities

 Apps – the building blocks

 Programs – a set of apps chained together

Snabb – the upstream project

6

Virtual Open Systems Proprietary

The available Snabb apps are:

 Intel 82599 10Gbps driver with VMDq support; Solarflare

 Vhost-user and virtio-net on the device side

 Virtio-net driver, for running it in VMs

 Packet filter with connection tracking; Rate limiter

 IP/GRE tunnels

 Learning bridge

 Single process/ single thread

 Linux/x86_64 only

Snabb – the upstream project continued

7

Virtual Open Systems Proprietary

A simple example program to connect a Intel NIC to a VM
with virito

local Intel82599 = require("apps.intel.intel_app").Intel82599

local VhostUser = require("apps.vhost.vhost_user").VhostUser

local c = config.new()

config.app(c, "nic", Intel82599, {pciaddr = "0000:00:01.00"})

config.app(c, "vh1", VhostUser, {socket_path="/tmp/vh1.sock"})

config.link(c, "nic.tx -> vh1.rx")

config.link(c, "vh1.tx -> nic.rx")

engine.configure(c)

engine.main()

Snabb – a simple program

8

Virtual Open Systems Proprietary

Virtual Open Systems created VOSYSwitch solution for the
end user, by amending Snabb features with:

 JSON configuration to define a packet processing graph

 Multi-process, single thread

 OpenStack Mitaka integration

 Performance optimizations (VM2VM)

 Packet scheduler – PQ, FQ, WFQ

 A software switch with VLAN and IGMP support

 RPM/DEB packaging, systemd integration

VOSYSwitch – a vSwitch based on
Snabb

9

Virtual Open Systems Proprietary

Virtual Open Systems is currently working on a number of
new (substantial) features which are to be released this year:

 OpenFlow 1.4 support

 More overlay networks - VxLAN, NSH

 ARM/v8

 ODP

VOSYSwitch – work in progress

10

Virtual Open Systems Proprietary

The previous example implemented in VOSYSwitch’s JSON:
{

 "switch1" : {

 "core" : "0x1",

 "devices" : {

 "igb1" : {

 "type" : "EthPCI",

 "args" : {"pciaddr" : "0000:XX:00.1"},

 "links" : { "tx": "vh1.rx"}

 },

 "vh1" : {

 "type" : "VhostUser",

 "args" : {"socket_path" : "/tmp/vh1.sock"},
 "links" : { "tx": "igb1.rx"}

 }

 }

 }

}

VOSYSwitch – JSON configuration
example

11

VM

virtio

vhost-user

TXRX

RXTX

Virtual Open Systems Proprietary

More complex topologies within the same configuration:

VOSYSwitch – more examples

12

vhost-user

rate
limiter

packet
filter

vhost-user

packet
filter rate

limiter

vhost-user

Core 1 Core 2

Virtual Open Systems Proprietary

Ixia RFC2544, simple vSwitch with 2 interfaces on the host

VOSYSwitch – performance on x86_64

13

64 128 256 512 768 1024 1280 1518
0

5000

10000

15000

20000

25000

Host switching throughput performance (RFC2544)

2_host_swtch

0.0004% Loss Tolerance

0.01% Loss Tolerance

5% Loss Tolerance

Packet Size (Bytes)

T
h

ro
u

g
h

p
u

t (
M

b
p

s
)

VOSYSwitch

Virtual Open Systems Proprietary

 Snabb and VOSYSwitch

 Porting to ARMv8

 DEMO description and performance results

 Further development

Agenda

14

Virtual Open Systems Proprietary

The porting effort started with a lot of low-level details:

 LuaJIT limitations:

– AArch64 - interpeter

– AArch32 – ARMv7 full support

– 47bit VA limitation (LuaJIT/issues/49)

 Snabb limitations (VA/PA conversion by mask)

 64k vs 4k pages

– AArch32 compat mode

 SSE/AVX port to NEON

 gcc-armhf -march=armv8-a+crc

VOSYSwitch port to ARMv8 -
challenges

15

Virtual Open Systems Proprietary

The initial effort was done with linux-generic on x86. Mostly
without problems.

 Modules used odp_pool, odp_packet, odp_pktio

 API inconsistencies, even in the same API level
• #define ODP_EVENT_INVALID _odp_cast_scalar(odp_event_t, 0xffffffff)

• #define ODP_EVENT_INVALID _odp_cast_scalar(odp_event_t, NULL)//in ODP-DPK

 Inline functions in the API headers

 platform/linux-dpdk/include/odp/packet.h
static inline uint32_t odp_packet_len(odp_packet_t pkt) {

 return *(uint32_t *)(void *)((char *)pkt + pkt_len_offset);

 }

VOSYSwitch – ODP adoption

16

Virtual Open Systems Proprietary

DPDK’s ARM support is still not mature enough. The main
ODP-DPDK development was done in x86. Some of the issues
found:

 odp_pktio_send() implementation returns -1 when no
packets have been sent which is considered an error on
ODP side, but not on DPDK side.

 -msse4.2 – This code was never compiled for ARM?

 virtio-net driver for ARM

 dpdk_memcpy on arm/arm64 is a #define, so this does not
work:
return (*dpdk_memcpy)(dst, src, num);

ODP-DPDK compilation on ARMv8

17

Virtual Open Systems Proprietary

 Snabb and VOSYSwitch

 Porting to ARMv8

 DEMO description and performance results

 Further development

Agenda

18

Virtual Open Systems Proprietary

By Leveraging the ODP API, VOSYSwitch achieved very
important goals.

 Extend the number of supported platforms:

– ODP-linux-generic

– ODP-DPDK

– ODP-NADK

 Single binary running on multiple hosts

– VOSYSwitch for ARM running on both LS2085A and
Juno board

 Single binary can access multiple HW resources at once,
i.e. DPAA2 + Intel DPDK

VOSYSwitch – ODP integration

19

Virtual Open Systems Proprietary

VOSYSwitch running on LS2085ARDB

20

DPAA2

VM

odp-dpdk

VOSYSwitch
packet filter

VM

odp-dpdk
OFP

NGiNX-OFP

VOSYSwitch vSwitch

odp-nadkodp-generic

10Gbps

pktgen

httperf

Virtual Open Systems Proprietary

VOSYSwitch – vSwitch JSON

21

{
 "switch1" : {
 "core" : "0",
 "devices" : {
...
 }
 }
 "switch2" : {
 "core" : "1",
 "devices" : {
 "vh_fw_out" : {
 "type" : "VhostUser",
 "args" : {"socket_path" : "/tmp/vh_fw_out.sock", "is_server" : true},
 "links" : { "tx": "odp0.rx"}
 },
 "odp0" : {
 "type" : "EthODP",
 "args" : {"ifname" : "dpni-0", "platform" : "nadk"},
 "links" : { "tx": "vh_fw_out.rx"}
 }
 }
 }
}

Virtual Open Systems Proprietary

VOSYSwitch – packet filter JSON

22

{
 "switch1" : {
 "core" : "0x1",
 "devices" : {
 "odp_in" : {
 "type" : "EthODP",
 "args" : {"ifname" : "0", "platform" : "dpdk", "platform_params" : "-m32"},
 "links" : { "tx": "odp_out.rx"}
 },
 "fw" : {
 "type" : "Firewall",
 "args" : {"filter" : "arp or icmp or tcp port 80", "state_table" : true},
 "links" : {"tx" : "odp_in.rx"}
 },
 "odp_out" : {
 "type" : "EthODP",
 "args" : {"ifname" : "1", "platform" : "dpdk", "platform_params" : "-m32"},
 "links" : { "tx": "fw.rx"}
 }
 }
 }
}

Virtual Open Systems Proprietary

Using the Apache Bench tool to get the number of
connections per second which the demo infrastructure can
handle. Using 10 parallel streams we are able to handle 5000
connections, using single two dual core VNFs and a single
core vSwitch.

 ab -n 10000 -c 1 100.0.0.4/

– 1500 conn/s

 ab -n 10000 -c 10 100.0.0.4/

– 5000 conn/s

DEMO performance results

23

Virtual Open Systems Proprietary

 Snabb and VOSYSwitch

 Porting to ARMv8

 DEMO description and performance results

 Further development

Agenda

24

Virtual Open Systems Proprietary

ODP API proved to be very flexible and more parts of it will
be adopted.

 ODP_CRYPTO

 ODP_QUEUE, ODP_SCHEDULER

 ODP_CLASSIFICATION

VOSYSwitch – next steps for ARMv8
and ODP

25

Virtual Open Systems is already investigating into a better
LuaJIT support for ARMv8. It is becoming a major supported
platform in VOSYSwitch and bringing the best performance
and experience out of it is a major goal.

Virtual Open Systems Confidential & Proprietary

VOSYSwitch Roadmap

VOSYSwitch 16.06
OpenFlow 1.5,

VXLAN, GRO, etc.

VOSYSwitch 16.03
ARMv8 support, ODP,
OFP, link aggregation

Q4 2017Q4 2015

Custom related development services and support

Products

Services

VOSYSwich 15.12
 VMtoVM, IPv6 GRE tunnels, filtering,
traffic limiter, OpenStack Mitaka
support, QoS, VLAN and IGMP,
40Gbps Ethernet support, etc.

VOSCON 16.12
 VOSYSwitch 16.06

 FPGA, GPU and DSP
acceleration support

for VNFs

Q2 2016Q1 2016

VOSCON 17.06
 Multitenancy support

 vTPM and RT, HA

Q4 2016

Virtual Open Systems Proprietary

Could we get some of these in the future:

 Tunneling interfaces offload – VxLAN, GRE

 OpenFlow switch

ODP future suggestions

27

Virtual Open Systems Proprietary

Questions

28

See our demo

In the LNG room

and on

www.virtualopensystems.com

n.nikolaev@virtualopensystems.com

a.spyridakis@virtualopensystems.com

http://www.virtualopensystems.com/en/solutions/demos/vosyswitch-odp-armv8/
mailto:n.nikolaev@virtualopensystems.com
mailto:a.spyridakis@virtualopensystems.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

